Iterative Solution of Piecewise Linear Systems for the Numerical Solution of Obstacle Problems
نویسندگان
چکیده
We investigate the use of piecewise linear systems, whose coefficient matrix is a piecewise constant function of the solution itself. Such systems arise, for example, from the numerical solution of linear complementarity problems and in the numerical solution of free-surface problems. In particular, we here study their application to the numerical solution of both the (linear) parabolic obstacle problem and the obstacle problem. We propose a class of effective semi-iterative Newton-type methods to find the exact solution of such piecewise linear systems. We prove that the semi-iterative Newton-type methods have a global monotonic convergence property, i.e., the iterates converge monotonically to the exact solution in a finite number of steps. Numerical examples are presented to demonstrate the effectiveness of the proposed methods. c ⃝ 2011 European Society of Computational Methods in Sciences and Engineering
منابع مشابه
Iterative Solution of Piecewise Linear Systems
Abstract. The correct formulation of numerical models for free-surface hydrodynamics often requires the solution of special linear systems whose coefficient matrix is a piecewise constant function of the solution itself. In so doing one may prevent the development of unrealistic negative water depths. The resulting piecewise linear systems are equivalent to particular linear complementarity pro...
متن کاملFUZZY INCLUSION LINEAR SYSTEMS
In this manuscript, we introduce a new class of fuzzy problems, namely ``fuzzy inclusion linear systems" and propose a fuzzy solution set for it. Then, we present a theoretical discussion about the relationship between the fuzzy solution set of a fuzzy inclusion linear system and the algebraic solution of a fuzzy linear system. New necessary and sufficient conditions are derived for obtain...
متن کاملNumerical solution of linear control systems using interpolation scaling functions
The current paper proposes a technique for the numerical solution of linear control systems.The method is based on Galerkin method, which uses the interpolating scaling functions. For a highly accurate connection between functions and their derivatives, an operational matrix for the derivatives is established to reduce the problem to a set of algebraic equations. Several test problems are given...
متن کاملTwo - Level Schwarz Method for Unilateralvariational Inequalitiesp
Numerical solution of variational inequalities of obstacle type associated with second-order elliptic operators is considered. Iterative methods based on the domain decomposition approach are here proposed for discrete obstacle problems arising from the continuous, piecewise linear nite element approximation of the diierential problem. A new variant of the Schwarz methodology, called the two-le...
متن کاملApproximate Solution of Sensitivity Matrix of Required Velocity Using Piecewise Linear Gravity Assumption
In this paper, an approximate solution of sensitivity matrix of required velocity with final velocity constraint is derived using a piecewise linear gravity assumption. The total flight time is also fixed for the problem. Simulation results show the accuracy of the method. Increasing the midway points for linearization, increases the accuracy of the solution, which this, in turn, depends on the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012